Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison between two types of photonic-crystal cavities for single-photon emitters

Identifieur interne : 000935 ( Chine/Analysis ); précédent : 000934; suivant : 000936

Comparison between two types of photonic-crystal cavities for single-photon emitters

Auteurs : RBID : Pascal:11-0306600

Descripteurs français

English descriptors

Abstract

The properties of photonic-crystal (PhC) cavity modes are investigated for applications in single-photon emitters. Hexagonal-lattice PhC H1 and L3 cavities are fabricated in a GaAs slab containing InAs quantum dots. The cavity modes are characterized by polarization-dependent micro-photoluminescence measurements. Split and nearly degenerate dipole modes in H1 cavities are demonstrated in the same batch of samples, and a single L3 cavity mode with specific polarization is clearly observed. The results reveal that the L3 PhC cavity exhibits fairly excellent performance even with remarkable distortion and is favorable for single-photon emitters. Finite-difference time-domain simulations show that the verticality of the air-hole sidewall has a significant influence on the properties of PhC cavity modes.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0306600

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Comparison between two types of photonic-crystal cavities for single-photon emitters</title>
<author>
<name>WENJUAN FAN</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Tsinghua National Laboratory for Information Science and Technology, State Key Laboratory on Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>ZHIBIAO HAO</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Tsinghua National Laboratory for Information Science and Technology, State Key Laboratory on Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stock, Erik" uniqKey="Stock E">Erik Stock</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institut für Festkörperphysik, Technishe Universität Berlin</s1>
<s2>10623 Berlin</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>JIANBIN KANG</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Tsinghua National Laboratory for Information Science and Technology, State Key Laboratory on Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>YI LUO</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Tsinghua National Laboratory for Information Science and Technology, State Key Laboratory on Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bimberg, Dieter" uniqKey="Bimberg D">Dieter Bimberg</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institut für Festkörperphysik, Technishe Universität Berlin</s1>
<s2>10623 Berlin</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0306600</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0306600 INIST</idno>
<idno type="RBID">Pascal:11-0306600</idno>
<idno type="wicri:Area/Main/Corpus">002F09</idno>
<idno type="wicri:Area/Main/Repository">003300</idno>
<idno type="wicri:Area/Chine/Extraction">000935</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary compounds</term>
<term>Finite difference time-domain analysis</term>
<term>Hexagonal lattices</term>
<term>III-V semiconductors</term>
<term>Indium Arsenides</term>
<term>Photoluminescence</term>
<term>Photonic crystals</term>
<term>Quantum dots</term>
<term>Single photon</term>
<term>Theoretical study</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photoluminescence</term>
<term>Etude théorique</term>
<term>Méthode différence finie domaine temps</term>
<term>Cristal photonique</term>
<term>Point quantique</term>
<term>Semiconducteur III-V</term>
<term>Composé binaire</term>
<term>Indium Arséniure</term>
<term>Réseau hexagonal</term>
<term>GaAs</term>
<term>InAs</term>
<term>As Ga</term>
<term>As In</term>
<term>4270Q</term>
<term>Photon unique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The properties of photonic-crystal (PhC) cavity modes are investigated for applications in single-photon emitters. Hexagonal-lattice PhC H1 and L3 cavities are fabricated in a GaAs slab containing InAs quantum dots. The cavity modes are characterized by polarization-dependent micro-photoluminescence measurements. Split and nearly degenerate dipole modes in H1 cavities are demonstrated in the same batch of samples, and a single L3 cavity mode with specific polarization is clearly observed. The results reveal that the L3 PhC cavity exhibits fairly excellent performance even with remarkable distortion and is favorable for single-photon emitters. Finite-difference time-domain simulations show that the verticality of the air-hole sidewall has a significant influence on the properties of PhC cavity modes.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>26</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Comparison between two types of photonic-crystal cavities for single-photon emitters</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>From heterostructures to nanostructures</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>WENJUAN FAN</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ZHIBIAO HAO</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>STOCK (Erik)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JIANBIN KANG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>YI LUO</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BIMBERG (Dieter)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BIMBERG (Dieter)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Tsinghua National Laboratory for Information Science and Technology, State Key Laboratory on Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institut für Festkörperphysik, Technishe Universität Berlin</s1>
<s2>10623 Berlin</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Berlin Technical University</s1>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA20>
<s2>014014.1-014014.7</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000191849600140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>29 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0306600</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The properties of photonic-crystal (PhC) cavity modes are investigated for applications in single-photon emitters. Hexagonal-lattice PhC H1 and L3 cavities are fabricated in a GaAs slab containing InAs quantum dots. The cavity modes are characterized by polarization-dependent micro-photoluminescence measurements. Split and nearly degenerate dipole modes in H1 cavities are demonstrated in the same batch of samples, and a single L3 cavity mode with specific polarization is clearly observed. The results reveal that the L3 PhC cavity exhibits fairly excellent performance even with remarkable distortion and is favorable for single-photon emitters. Finite-difference time-domain simulations show that the verticality of the air-hole sidewall has a significant influence on the properties of PhC cavity modes.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B70Q</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>21</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Méthode différence finie domaine temps</s0>
<s5>23</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Finite difference time-domain analysis</s0>
<s5>23</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Cristal photonique</s0>
<s5>47</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Photonic crystals</s0>
<s5>47</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>48</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>48</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>50</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>50</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>51</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>51</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Réseau hexagonal</s0>
<s5>61</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Hexagonal lattices</s0>
<s5>61</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>As Ga</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>As In</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>4270Q</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Photon unique</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Single photon</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>206</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000935 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000935 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:11-0306600
   |texte=   Comparison between two types of photonic-crystal cavities for single-photon emitters
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024